∠F1PF2=θ 记|F1P|=x |F2P|=y |F1F2|=z 由椭圆的定义 x+y=2a z=2c 由余弦定理 x^2+y^2-2xycosθ=z^2 (x+y)^2-2xy(cosθ+1)=z^2 4a^2-2xy(cosθ+1)=4c^2 xy=2(a^2-c^2)/(cosθ+1) xy=2b^2/(cosθ+1) S=1/2*xy*sinθ =1/2*[2b^2/(cosθ+1)]*sinθ =b^2*sinθ/(cosθ+1) [2倍角公式] =b^2*[2sin(θ/2)cos(θ/2)]/[2(cosθ)^2-1+1] =b^2*sin(θ/2)/cos(θ/2) =b^2*tan(θ/2)