解答如下:
sin(4x - π/6)= cos(4x + π/3)
所以f(x)= sin(π/3+4x)+sin(4x-π/6)
= sin(π/3+4x)+ cos(4x + π/3)
= √2sin(4x + π/3 + π/4)
= √2sin(4x + 7π/12)
所以最小正周期为π/2
sin的递减区间为(π/2 + 2kπ,3π/2 + 2kπ),k ∈ Z
所以4x + 7π/12 ∈ (π/2 + 2kπ,3π/2 + 2kπ),k ∈ Z
所以递减区间为 x ∈ (-π/48 + kπ/2,11π/48 + kπ/2),k ∈ Z