解:
f(x)=sin(π/3+4x)+sin(4x-π/6)
f(x)=sin(π/3)cos(4x)+cos(π/3)sin(4x)+sin(4x)cos(π/6)-cos(4x)sin(π/6)
f(x)=(1/2)[√3cos(4x)+sin(4x)+√3sin(4x)-cos(4x)]
f(x)=(√2){[(√3-1)/(2√2)]cos(4x)+[(√3+1)/(2√2)]sin(4x)}
令:(√3-1)/(2√2)=sinα,则:(√3+1)/(2√2)=cosα
代入上式,有:
f(x)=(√2)[sinαcos(4x)+cosαsin(4x)]
f(x)=(√2)sin(4x+α)
最小正周期:
2π/4=π/2
递减区间:
f(x)=(√2)sin(4x+α)
令:f(x)≤0,即:(√2)sin(4x+α)≤0
整理,有:sin(4x+α)≤0
解得:kπ/2+3π/8-α/4≤x≤kπ/2+π/4-α/4,其中:k=0、±1、±2……,α=arcsin[(√6-√2)/4]
即:f(x)的递减区间是:
x∈[kπ/2+3π/8-α/4,kπ/2+π/4-α/4],其中:k=0、±1、±2……,α=arcsin[(√6-√2)/4]