f(x)=2sin^2(π/4+x) - √3 cos2x =2(1-cos^2(π/4+x))-√3 cos2x =1-(2cos^2(π/4+x)-1)-√3 cos2x =1-cos(2x+π/2))-√3 cos2x =1+sin2x-√3 cos2x =1+2sin(2x-π/3) 所以函数的最小正周期t=π 单减区间为2kπ+π/2≤2x-π/3≤2kπ+3π/2 得到的区间为【kπ+5/12π,kπ+11/12π】k为整数。 |f(x)-m|=|1+2sin(2x-π/3)-m|<2 在区间[π/4,π/2]上,2sin(2x-π/3)的取值范围是[1,2] |1+2sin(2x-π/3)-m|<2恒成立。2≤1+2sin(2x-π/3)≤3 则 -2+m<1+2sin(2x-π/3)<2+m 1 < m<4