(ⅰ)若a=1,则f(x)=x+lnx,f′(x)=1+
1
x =
x+1
x ,
∵x∈[1,e],∴f′(x)>0,∴f(x)在[1,e]上为增函数,
∴f(x)max=f(e)=e+1;
(ⅱ)要使x∈[1,e],f(x)≤0恒成立,只需x∈[1,e]时,f(x)max≤0,
显然当a≥0时,f(x)=ax+lnx在[1,e]上单增,
∴f(x)max=f(e)=ae+1>0,不合题意;
当a<0时,f′(x)=a+
1
x =
ax+1
x ,令f′(x)=0,x=?
1
a ,
当x<?
1
a 时,f′(x)>0,当x>?
1
a 时,f′(x)<0,
①当?
1
a ≤1时,即a≤-1时,f(x)在[1,e]上为减函数,
∴f(x)max=f(1)=a<0,∴a≤-1;
②当?
1
a ≥e时,即?
1
e ≤a<0时,f(x)在[1,e]上为增函数,
∴f(x)max=f(e)=ae+1≤0,a≤?
1
e ,∴a=?
1
e ;
③当1<?
1
a <e时,即?1<a<?
1
e 时,f(x)在[1,?
1
a ]上单增,f(x)在[?
1
a ,e]上单减,
∴f(x)max=f(?
1
a )=?1+ln(?
1
a ),
∵1<?
1
a <e,∴0<ln(?
1
a )<1,∴f(?
1
a )<0成立;
由①②③可得a≤?
1
e .
(ⅲ)由(ⅱ)知当a≤-1或a≥-
1
e 时,f(x)在[1,e]上单调,不满足题意;
当-1<a<-
1
e 时,fmax(x)=f(?
1
a )=-1+ln(-
1
a
本回答由提问者推荐
回答纠错|评论