2011-2-13 22:29
满意回答
解:∵∫x?cos(4x)dx=x?sin(4x)/4-3/4∫ x?sin(4x)dx (应用分部积分法)
=x?sin(4x)/4+3x?cos(4x)/16-3/8∫xcos(4x)dx (同上)
=x?sin(4x)/4+3x?cos(4x)/16-3xsin(4x)/32+3/32∫ sin(4x)dx (同上)
=x?sin(4x)/4+3x?cos(4x)/16-3xsin(4x)/32-3cos(4x)/128+C1
同理可得∫x?cos(2x)dx=x?sin(2x)/2+3x?cos(2x)/4-3xsin(2x)/4-3cos(2x)/8+C2
∴∫ x?sin^4(x)dx=∫x?[3/8-cos(2x)/2+cos(4x)/8]dx (应用半角公式)
=3/8∫x?dx-1/2∫x?cos(2x)dx+1/8∫x?cos(4x)dx
=3x^4/32-1/2[x?sin(2x)/2+3x?cos(2x)/4-3xsin(2x)/4-3cos(2x)/8]+1/8[x?sin(4x)/4+3x?cos(4x)/16-3xsin(4x)/32-3cos(4x)/128]+C
(C是积分常数)
=3x^4/32+[sin(4x)/32-sin(2x)/4]x?+3[cos(4x)/128-cos(2x)/8]x?+3[sin(2x)/8-sin(4x)/256]x+3[cos(2x)/16-cos(4x)/1024]+C。