kx?+(k+1)x+(k/4)=0,k/4表示4分之k (1) 方程有两个不等的实数根,则判别式大于0且k≠0 Δ=(k+1)?-4k(k/4)>0 且k≠0 k?+2k+1-k?>0 且k≠0 k>-1/2 且k≠0 实数k的取值范围是 -1/2<0或k>0 (2) 设方程的两根是a,b,由韦达定理得 a+b=-(k+1)/k,ab=(k/4)/k=1/4 两根的倒数和 =1/a+1/b =(a+b)/(ab) =[-(k+1)/k]/(1/4) =-4(k+1)/k =0 所以k+1=0,k=-1<-1/2 所以不存在实数k,使得方程的两根倒数和为0